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Spurious Mode Generation in Nonuniform Waveguide*

L. SOLYMAR~

Summary—This paper deals with the problem of a nonuniform

waveguide joining two uniform ones and the spurious modes gen.

erated by it when a pure mode is incident in one of the uniform wave-

guides.

The generalised telegraphist% equations are stated and trans-
formed into a set of differential equations for the amplitudes of the
forward and backward traveling waves. The expressions for the
coupling coefficients between the various modes are given and

analysed.
By making certain assumptions, the differential equations are

solved and the amplitudes of the modes are given in a closed form.

Subject to these same assumptions, it is proved that the power in

the spurious modes may be kept below any predetermined level,

provided the nonuniform waveguide is sufficiently gradual.

1. INTRODUCTION

w

\
AVEGUI DES whose cross sections change

along the axis have been frequently investi-

gated. A general solution was first given by

Stevenson, L who expanded the field intensities into a

series of the cross sectional wave functions. Using the

same approach generalised telegraphist’s equations were

derived independently at the same time by Schelkunoff,2

Reiter,3 and Katzenelenbaum.4 Since then, these meth-

ods were used successfully for solving a large number of

problems.5–ls
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In the present paper, the amplitudes of the spurious

modes, due to a nonuniform waveguide section, are de-

termined. In Section II, Reiter’s equations are trans-

formed into a differential equation system in terms of

forward and backward traveling waves. ]n Section II 1,

the coefficients of this differential equation system are

computed, and a few general conclusions are drawn. The

differential equation system is simplified and solved by

using a few approximations in Section IV, while in

Section V, a theorem on sufficiently gradual nonuniform

waveguides is proved. Section VI deals with two practi-

cal examples illustrating the application of the formulae

derived.

II. THE GENERALISED TELEGRAPHIST’S EQUATIONS

Let the uniform waveguide GI extend from z = – m

to z = O, and the uniform waveguide Gz from z =.L to

z = ~ (Fig. 1.), Let us connect them by a nonuniform

waveguide which has the following properties: the equa-

tion of the surface is F(z, y, z) = O, which is differentiable

as a function of z. A plane perpendicular to the z axis

cuts this surface in a single, closed curve; the cross-

section of the nonuniform waveguide. The intericlr of

any cross section is denoted by S(z), ancl its boundary

by C(z). The cross-sections at z = O and z== L correspond

to those of the uniform waveguides G1 and G2 respec-

tively.

+=$=--’
1=0 Z~L

Fig. 1—A nonuniform waveguide secl.iou.

Our purpose is to determine the spurious modes ill

waveguide Gt, if waveguide GI is fed by a pure mode

(subsequently called the main mode).

The nonuniform waveguide may be regarded as a

system of coupled transmission lines, where the coupling

coefficients are functions of z. The field intensities in the

nonuniform waveguide may be represented by equiva-

lent voltages and currents. The differential equation

system for these voltages and currents is known as the

generalised telegraphist’s equation. Neglecting losses,

we can use the following form as derived by Reiter: 14

14G. Reiter, “Generalised telegraphist’s equation for waveguides
of varying cross-section, ” presented at the Convention on Long
Distance Transmission by Waveguide, ” London, Eng., 1959; Jan-
uary 29–30.
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where i and P denote arbitrary modes (for the time

being there is no need to discriminate the E and H

modes). V, and Ii are the equivalent voltages and cur-

rents for the mode L pi is the propagation coefficient,

and K, is the wave impedance. TP, and T,p represent

the voltage and current transfer coefficients.

We point out that there is no mutual impedance be-

tween the voltages and currents of different modes, and

there is a simple connection between the current and

voltage transfer coefficients.

The transfer coefficient T,, may be expressed as fol-

lows ;

(2)

where Zp and Zi are the mode vector functions15 of the

corresponding modes, which satisfy the normalisation

conditions,

JI \Zp 2dS = 1. (3)
S(8)

For writing the mode vector functions, we must dif-

ferentiate between E and H modes. For E modes, (sub-

scripts in parentheses)

E(p) = – vt!L(p). (4)

For H modes, (subscripts in brackets)

where

Vt = the gradient operator transverse to the z axis

zo = the unit vector in the direction of the z axis.

The ~(fl) and IJJ[pl functions satisfy the differential

equations

v?+(p) + /L(p)2#(p)= o

ifp~ = O on C(z) (6)

and

vt2$[Pl+ k[p]2ti[p]= o

where

di[p]
— = O on C(z)

8?2

h[p] = (w – B[p]2)l/2

k(p) = (L?2 – B(P)2)112

k = 2w/i.

1’ N. Marcuritz, “Waveguide Handbook, ”
Co., Inc., New York, N. Y., p. 4; 1951.

(7)

McGraw-Hill Book

For the description of a wave phenomenon, the repre-

sentation in terms of forward and backward traveling

waves seems to be more suitable. Therefore, assuming

that

K,#O and Ki #m, (7a)

we introduce as new variables the amplitudes of the for-

ward and backward traveling waves, A,+ and A i-, by

the relations

V, = K; ’12( A,+ + A,-)

Ii = KZ-ll’(A;- + A,-).

Substituting (8) into (1) we obtain the

ferential equations for coupled traveling

(8)

following dif-

waves;

dA ~+ 1 d(ln KJ
— – —j~,Ac+ – — A;-

dz – 2 dz

+ z(sip+.~p+ + Sip-AP-)
P

dA,- 1 d(ln Ki)
A,+

dz ‘–~ dz

+ 13, Ai- + x (Sip-Ap+ + S,P+AP-) (9)
P

where S;p~ is the forward and S;P– the backward cou-

pling coefficient. Both may be expressed in terms of the

transfer coefficients as follows:

CJ, + = _!_ ‘P1’2
[

K$/2
~P 1— Tp: ~ ~-~~ Tip . (10)

2 ~il/2
P

If the waveguide Gl is fed by a mode m, the boundary

conditions for the differential equation system are as

follows ;

A~+(0) = Ao, A~-(L) = O

A,+(O) = O A,-(L) = o (i # m). (11)

II 1. THE TRANSFER .4ND COUPLING COEFFICIENTS

Substituting the mode vector functions into (2), using

Green’s and Stokes’ theorems, the relations

and the identities

d+(j) th+(i)——. — tan 0;
dz=–dn

a W[i] lw[i]
— —~ — — tan 19on C(z),
8Z dn ilnl

(13)

the transfer and coupling coefficients may be expressed

by line integrals as follows ;’6

16Similar ~xpre~~ions can be derived for the cases when h(i) = ~Z(rJ)

and kol =k[PI.
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T(i)(p) =

T(, )[P1 =

T[:1(2) =

T[i][p] =

T(, )(,) =

T[,l[,l =

s:,) (i) =

s:, (p) =

Sft) [p] =

s:] [p] =

where

OJ= angular frequency

p = permeability

E= dielectric constant

h(p)’

f

aj(i) U*(P)
tan e — — ds; h(,) # h(p)

k(i) 2 — k(p)~ c(z) dfi t)n

o,

s;,][,]=o

$ CYy!’[i] $
(w[p]

~[tl~[pl’ tan 04[.1 —ds + @[V1k[i12 tan 19+[tl — ds
c(s) c3122 c(z) drL2

—

2<f?[, ]j3[p](h[, ]2 – L[P]2)

O= angle between the outward normal to C(z) and

the normal to the nonuniform waveguide (Fig. 2)

ds = an element of the C(z) curve.

Fig. 2—Parameters used for the description of the nonuniform wave-
guide. Z—the outward normal to the boundary curve, ?t—the
outward normal to the nonuniform waveguide.

A few interesting conclusions may be drawn from the

above Equations.

1) The transfer voltage coefficient from an E mode

to an H mode is zero (15).

2) The transfer current coefficient from an H mode

to an E mode is zero (15).

3) The S+ matrix is skew-symmetric (10).

4) The S- matrix is symmetric (10).

5) The backward coupling coefficient into the same

mode is frequency independent (18), (19).

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

6) The coupling coefficients change very little with

frequency, if it is not too near to the cut-off frequency

(21)-(23).

7) The absolute values of the forward and backward

coupling coefficients from an H mode into an E mode

(or from an E mode into an H mode) are identical (22).

8) If on C(z) either tan 6, or d~[P1/’ds equal zero,

there is no coupling between the 11~ mode and any c)f the

E modes. (For example no E modes are generated by

changing the dimensions of the broad side of a rec-

tangular waveguide, which supports an HO. mode) (22).

9) The coupling of any one H mode to another (or

any E mode to another) is larger the nealrer their corre-

sponding cut-off numbers are. This is only a rough rule,

because the effect of the line integrals in (21) and (23)

is not taken into account.

Ii7. AN APPROXIMATE SOLtTTION OF TIIE l) IF~ERETJTIAL

EQUATION SYSTEM

We shall consider only such nonuniform waveguides

in which the expected power conversion into the spuri-

ous modes is small by comparison with the power in

~he main mode. For gradual transitions, this is generally

true. An exception arises however when a spurious mode

has the same cut-off number as the main mode at each

cross section. Excluding the latter case, we may assume

that neither the spurious modes nor the reflection in the

main mode have any effect on the forward propagation

of the main mode. (This assumption ‘was frequently
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used in nonuniform transmission line theoryl’ and led

to the linearisation of the Riccatti differential equa-

tion.)

Thus we have to solve for Aw+(z) the following simple

differential equation;

dAm+

— j/3wd ,.+, A,n+(0) = .40,
dz =

(24)

whence

r n~ 1

A ~+(z) = .4 ~ exp
l-l ‘mdz_l” ‘2’)

We assume further that the backward traveling main

mode and both the forward and backward traveling

spurious modes are excited only by the main mode;

i.e., we neglect the interaction of the different spurious

modes among themselves, and the interaction between

a forward and backward traveling spurious mode.

Because of the restriction (7a) the solution will be valid

only for those modes which are above cut-off everywhere

in the nonuniform waveguide.

Subject to the above approximations, the following

differential equations can be written

dA.-

(

1 d(ln KJ

dz
– ji%d .– = Smnl– – —

)

An+

2 dz

dA ,+

~ + .773*A,+ = s%.’+.4m+
az

.JA——
Uz’ii

— – j~i.-l ~– = S,.-A.+.
dz

(26)

V. A THEOREM ON SUFFICIENTLY GRADUAL TAPERS

If the equation of the surface of the nonuniform

waveguide, F(x, y, z) = O, is given, the functions

.S~~*(z), ~,(z), &(z) maybe determined. Then subject to

the validity of the approximations used in the previous

Section, the amplitudes of the forward and backward

traveling spurious mode i may be obtained from
(28). Let us investigate how these amplitudes will

change if the nonuniform waveguide is lengthened by

a factor u while its other dimensions are retained. The

equation of the new nonuniform wave guide is

()F x,y, ~ = o,
u

the coupling coefficient is

()2_S%7?L* ? ,

u u

the propagation coefficients are

“’Hand‘m(-)
and the amplitude of the spurious mode

follows ;

(29)

(30)

(31)

i is given as

f a%

where t = z/c and L is the length of the original nonuni-

form waveguide.

Taking into account the boundary conditions (1 1), Using a transformed form of the Riemann lemma, it

the solutions of the differential equations are as follows; may be easily shown that the amplitude of any spurious

A~-(0) = – exp [-’tL’mdzlLL@mm--+‘(’::m))exp[-’’fo’”mdzldz
28= +ex’[-’fo’~dzlfo’s~’exp[-’lz(”~+“’)’21’2

(27)

(28)

The amplitudes of the forward and backward con-

verted spurious modes have been computed recently by

Katzenelenbaum,lL12 using a different approach, The

equations given in this paper are believed to be more

accurate because no approximations were used in the

determination of the coupling coefficients.

IT F. Bolinder,. “Fourier transforms in the theory of inhomogene-

ous transmission hnes,” T~ans. Roy. Inst. Tech., Stockholm, Sweden.
no. 48, p. 84; 1951.

mode may be held below any predetermined level by

choosing a sufficiently Iarge.ls Hence, if a pure mode is

incident at the input, the mode at the output may be

made arbitrarily pure. Thus a sufficiently gradual non-

uniform waveguide may be represented by a single

nonuniform transmission line.

IS This does not mean that by making the nonuniform waveguide

longer it will be necessarily better.
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Examples

For the first example, let us take a rectangular wave-
:E;:;} = *exp[T’LL~’m~’’zlJoLs~mN’’mn’

guide, with b its narrow wall a function of z, and conl-

pute the reflection of the HOI mode. Then

[s

z

. exp —j
)

(~[ml + ~hmv])~z ah; It # ~ (37)
d(ln KCOU) = ~ o

(33)
dz where

,6[WLVIX2[?W11(X2[IW1 –
&V] [..] = ‘—

fl~z) + ~[W]X2[VIN] (x2[~. ] – I}z2) d(ln a)
(38)

@[rnNIp[rnnl (X’[d’] – X’[rrd) dz ‘

1 d(ln b)
S;ol] [01] = – ~ ~ (34)

where

X1.,nl – the nth root of the Bessel function jjr’(x),

a — the radius of the cross-section at z.

(39)

Eq. (35) agrees with the result derived by ordinary

transmission line theory, but an essential difference is

implied.

By classical transmission line theory, the only reason

for reflection is a change in impedance, and for that

reason it has been assumed that the characteristic

impedance of the rectangular waveguide (excited in the

dominant mode) is proportional to its height. This

assumption certainly led to a correct result, but it had

to introduce the concept of characteristic impedance,

which has a very limited scope in dealing with wave-

guides.

However, approaching the rectangular waveguide

from the viewpoint of general nonuniform waveguide

theory, it is obvious from (27) that even in first order

approximation—reflections are clue to two reasons:

1)change in wave impedance, and 2) backward coupling

into the same mode.

Thus—in our interpretation—the reflection in the

above rectangular waveguide is due to a backward

coupling and not a change in impedance.

Let us take for the second example a circularly sym-

metrical taper, which connects two circular waveguides

of different diameters. We shall compute the amplitude

of the spurious modes H ,u, v,EIIN in waveguides GI and

G~, when waveguide GI is fed by an H~~ mode. The cal-

culation applies only to modes above cut-off at every

cross-section of the taper.

Substituting the necessary expressions into (29), we

get the amplitudes of the spurious modes in the follow-

ing form;

where

The amplitudes of the forward and backward lFf~n

and En. modes are given in terms of integrals which

can be evaluated by any one of the approxirnate inte-

gration methods when the shape of the taper is given.

~’ I. CONCLUSIONS

A differential equation system in terms clf forward ancl

backward traveling waves has been obtained for a gen-

eral nonunforrn waveguide. The forward and backward

coupling coefficients between the different modes have

been given and some general conclusions have been

drawn about their properties. Assuming that all the in-

vestigated modes are above cut-off at every cross-sec-

tion of the nonuniform waveguide, and the change in

axial direction is gradual, the differential equ~ation s>Ts-

tem has been solved. The amplitudes of the spurious

modes at the beginning and at the end c}f the nonuni-

form waveguide have been given in a closed form.

It has been proved that by making the nonuniform

waveguide more and more gradual, the amplitudes of

all the spurious modes tend to zero. Thus–—assuming a

pure incident mode—a sufficiently gradual nonuniform

waveguide may be represented by a single nonuniform

transmission line.
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