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Spurious Mode Generation in Nonuniform Waveguide*
L. SOLYMAR?$

Summary—This paper deals with the problem of a nonuniform
waveguide joining two uniform ones and the spurious modes gen-
erated by it when a pure mode is incident in one of the uniform wave-
-guides.

The generalised telegraphist’s equations are stated and trans-
formed into a set of differential equations for the amplitudes of the
forward and backward travelling waves. The expressions for the
coupling coefficients between the various modes are given and
analysed.

By making certain assumptions, the differential equations are
solved and the amplitudes of the modes are given in a closed form.

Subject to these same assumptions, it is proved that the power in
the spurious modes may be kept below any predetermined level,
provided the nonuniform waveguide is sufficiently gradual.

I. INTRODUCTION

AVEGUIDES whose cross sections change
&;%/ along the axis have been {requently investi-
gated. A general solution was first given by
Stevenson,* who expanded the field intensities into a
series of the cross sectional wave functions. Using the
same approach generalised telegraphist’s equations were
derived independently at the same time by Schelkunoff,?
Reiter,® and Katzenelenbaum.* Since then, these meth-
ods were used successfully for solving a large number of
problems.’—1

* Manuscript received by the PGMTT, January 21, 1959; revised
manuscript received, March 20, 1959.
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In the present paper, the amplitudes of the spurious
modes, due to a nonuniform waveguide section, are de-
termined. In Section II, Reiter’s equations are trans-
formed into a differential equation system in terms of
forward and backward travelling waves. In Section III,
the coefficients of this differential equation system are
computed, and a few general conclusions are drawn. The
differential equation system is simplified and solved by
using a few approximations in Section IV, while in
Section V, a theorem on sufficiently gradual nonuniform
waveguides is proved. Section VI deals with two practi-
cal examples illustrating the application of the formulae
derived.

II. ToE GENERALISED TELEGRAPHIST'S KEQUATIONS

Let the uniform waveguide Gi extend from z= — «
to 2=0, and the uniform waveguide G, from z=1 to
z= o (Fig. 1.). Let us connect them by a nonuniform
waveguide which has the following properties: the equa-
tion of the surface is F(x, v, 2) =0, which is differentiable
as a function of 2. A plane perpendicular to the z axis
cuts this surface in a single, closed curve; the cross-
section of the nonuniform waveguide. The interior of
any cross section is denoted by S(2), and its boundary
by C(z2). The cross-sections at =0 and z==L correspond
to those of the uniform waveguides G; and G, respec-
tively.

WAVEGDIDE. G,
WAVEGUIDE. Gy I———

——_|

1-0 Z:L

Fig. 1—A nonuniform waveguide section.

Our purpose is to determine the spurious modes in
waveguide G, if waveguide Gy is fed by a pure mode
(subsequently called the main mode).

The nonuniform waveguide may be regarded as a
system of coupled transmission lines, where the coupling
coefficients are functions of 2. The field intensities in the
nonuniform waveguide may be represented by equiva-
lent voltages and currents. The differential equation
system for these voltages and currents is known as the
generalised telegraphist’s equation. Neglecting losses,
we can use the following form as derived by Reiter:*

14 G, Reiter, “Generalised telegraphist’s equation for waveguides
of varying cross-section,” presented at the Convention on Long
Distance Transmission by Waveguide,” London, Eng., 1959; Jan-
uary 29-30.
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where ¢ and p denote arbitrary modes (for the time
being there is no need to discriminate the E and H
modes). V, and I; are the equivalent voltages and cur-
rents for the mode 4. 8; is the propagation coefficient,
and K, is the wave impedance. T, and T3, represent
the voltage and current transfer coefficients.

We point out that there is no mutual impedance be-
tween the voltages and currents of different modes, and
there is a simple connection between the current and
voltage transfer coefficients.

The transfer coefficient T',, may be expressed as fol-
lows;

Tpi = f &y —— dS (2)
S (2) 0z

where &, and &; are the mode vector functions® of the
corresponding modes, which satisfy the normalisation
conditions,

f | &,|%dS = 1. A3)
S(2)

For writing the mode vector functions, we must dif-
ferentiate between E and H modes. For E modes, (sub-
scripts in parentheses)

€ = — Vil (p. (4)

For H modes, (subscripts in brackets)

€1 = ZoxV i [p) ©)

where

V.=the gradient operator transverse to the z axis

zo=the unit vector in the direction of the z axis.

The ¢, and ¢, functions satisfy the differential
equations

Vo + ke =0

Y@ = 0on C(3) (6)
and
V¥ + b = 0
61::::] = 0 on C(z) (7
where
hipy = (B — Bin®)'?
hepy = (B* — B!/
k= 2x/\.

18 N. Marcuritz, “Waveguide Handbook,” McGraw-Hill Book
Co., Inc., New York, N. Y., p. 4; 1951,
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For the description of a wave phenomenon, the repre-
sentation in terms of forward and backward travelling
waves seems to be more suitable. Therefore, assuming
that

K,#0 and K;# «, (7a)

we introduce as new variables the amplitudes of the for-
ward and backward travelling waves, 4,7 and 4;~, by
the relations

Vi= K34, + A7)
I, = KA+ A7). (8)

Substituting (8) into (1) we obtain the following dif-
ferential equations for coupled travelling waves;

dA i+ 1 d(In K,
= - jﬁzAz+ - A
dz 2 dz
+ Z(Sip+*4p+ + Sip_Apﬁ)
?
dA.;~ 1 d{ln Ky)
= — —— AZ+
dz 2 dz

+ 8.4 + E (S Ayt + St dy) (9)

where S;,* is the forward and S;,~ the backward cou-
pling coefficient. Both may be expressed in terms of the
transfer coefficients as follows:

L1 K, K
Sip_ = Tpi e Tip .

2 Lo P K 10

If the waveguide G is fed by a mode m, the boundary
conditions for the differential equation system are as
follows;

Am+(0) = AU)
A+0) =0

A (L) =0

AL =0 G=m). (11)

I1I. THE TRANSFER AND CoUPLING COEFFICIENTS

Substituting the mode vector functions into (2), using
Green’s and Stokes’ theorems, the relations

i 8
Ky =-— Ko = @ ) B2 = wlue (12)
@) we
and the identities
Wy W
—_— = — n b,
0z on
4 My RN tan 6 on C(z) (13)
— = — an ¢ on C(z
dz  On In? ’

the transfer and coupling coefficients may be expressed
by line integrals as follows;*

18 Similar expressions can be derived for the cases when kg =k,
and kg =hp.
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Bim? oy o
Toe = —-L~f tan § —2 7@ ds; hay %= by (14)
kit — ™/ @ dn  In
Tww =0, (15)
MW W
T[,’](p) = —j tané ? ds (16)
C(z) as on
hii® 0% 1y
T[i][]:——————f tan 8y ,) — ds; higg #Z h 17
D i Pee, Sl [s] »] .( )
_ 1 W y\?
Tww =Swm = — = tan 0( ( )> ds (18)
2 C(z) on
_ 1 ra\?
T = St = ——j{ tan9<‘l/[]> ds
2J ¢ as (19)
+ +
Sww =S =0 (20)
+ Bwhmp? £ Bumko?® Wy O
Sty — e ng—= 27 g, hey # b (21)
2vB@Bw (@ = kD J cw on  In
+ k N oY
S5y = ]{ tan g —~2 22 4 (22)
2v/BwBin J o) an s
. Y Y m
Bmh[m“f tan 6y 1, ds + ﬁmhm?]{ tan 6y —— ds
+ C(z) n? C(z) on?
St = (23)

where

w=angular frequency
u=permeability
e=dielectric constant
6 =angle between the outward normal to C(z) and
the normal to the nonuniform waveguide (Fig. 2)
ds=an element of the C(z) curve.

Fig. 2—Parameters used for the description of the nonuniform wave-
guide. i—the outward normal to the boundary curve, #ii—the
outward normal to the nonuniform waveguide.

A few interesting conclusions may be drawn from the
above Equations.

1) The transfer voltage coefficient from an E mode
to an H mode is zero (195).

2) The transfer current coefficient from an H mode
to an E mode is zero (15).

3) The S* matrix is skew-symmetric (10).

4) The S~ matrix is symmetric (10).

5) The backward coupling coefficient into the same
mode is frequency independent (18), (19).

2/ BrBior(hra® — hip?)

6) The coupling coefficients change very little with
frequency, if it is not too near to the cut-off frequency
21)-(23).

7) The absolute values of the forward and backward
coupling coefficients from an H mode into an E mode
(or from an E mode into an H mode) are identical (22).

8) If on C(2) either tan 8, or dY,/ds equal zero,
there is no coupling between the 11, mode and any of the
E modes. (For example no E modes are generated by
changing the dimensions of the broad side of a rec-
tangular waveguide, which supports an Ho, mode) (22).

9) The coupling of any one H mode to another (or
any E mode to another) is larger the nearer their corre-
sponding cut-off numbers are. This is only a rough rule,
because the effect of the line integrals in (21) and (23)
is not taken into account.

IV. AN APPROXIMATE SOLUTION OF THE DIFFERENTIAL
EQUATION SYSTEM

We shall consider only such nonuniform waveguides
in which the expected power conversion into the spuri-
ous modes is small by comparison with the power in
the main mode. For gradual transitions, this is generally
true. An exception arises however when a spurious mode
has the same cut-off number as the main mode at each
cross section. Excluding the latter case, we may assume
that neither the spurious modes nor the reflection in the
main mode have any effect on the forward propagation
of the main mode. (This assumption was frequently
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used in nonuniform transmission line theory' and led
to the linearisation of the Riccatti differential equa-
tion.)

Thus we have to solve for 4,,1(2) the {following simple
differential equation;

dAnt
ds

At (z) = Agexp [—jfzﬁmdz:l.
0

We assunie further that the backward traveling main
mode and both the forward and backward travelling
spurious modes are excited only by the main mode;
i.e., we neglect the interaction of the different spurious
modes among themselves, and the interaction between
a forward and backward travelling spurious mode.
Because of the restriction (7a) the solution will be valid
only for those modes which are above cut-off everywhere
in the nonuniform waveguide.

Subject to the above approximations, the following
differential equations can be written

= — jBndnt, Ax7(0) = A,, (24)

whence

(25)

dA.~ 1 d(ln K,)
- jﬁml{{m_ = <Smm_ - T “‘“—_‘> Am+
dz 2 dz
qdr
Iz +]}81Az+ = St Ant (26)
dAi— s
- ]Bifii—' = S1m~Am+~
. dz

Taking into account the boundary conditions (11),
the solutions of the differential equations are as follows;

1) = —esp| [ e ] [* (50
i’:@} == CXP[“J' fo LWZ] fo LSzmiexp[—f fo z Bn F ei)dz} dz.

The amplitudes of the forward and backward con-
verted spurious modes have been computed recently by
Katzenelenbaum,'':'? using a different approach. The
equations given in this paper are believed to be more
accurate because no approximations were used in the
determination of the coupling coefficients.

17 F. Bolinder, “Fourier transforms in the theory of inhomogene-
ous transmission lines,” Trans. Roy. Inst. Tech., Stockholm, Sweden.
no. 48, p. 84; 1951,
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V. A THEOREM ON SUFFICIENTLY GRADUAL TAPERS

If the equation of the surface of the nonuniform
waveguide, F(x, y, 2) =0, is given, the functions
Sint(2), 8.(2), Bn(2) may be determined. Then subject to
the validity of the approximations used in the previous
Section, the amplitudes of the forward and backward
travelling spurious mode ¢ may be obtained from
(28). Let us investigate how these amplitudes will
change if the nonuniform waveguide is lengthened by
a factor ¢ while its other dimensions are retained. The
equation of the new nonuniform wave guide is

b4
F<x: Y5 _> = 0) (29)
g
the coupling coefficient is
1 b4
J— Szmi <_>, (30)
g g
the propagation coefficients are
2 2
ﬁi <—> and .Bm <——> 3 (31)
a [

and the amplitude of the spurious mode ¢ is given as

follows;
L
f St (t)
0

sty
osp {=io [l 7 g0} al, G

4:0) |

where t=2/0 and L is the length of the original nonuni-
form waveguide.

Using a transformed form of the Riemann lemma, it
may be easily shown that the amplitude of any spurious

1 d(ln K., ) :
S —_—> exp [—]Zf Bmdz:l dz (27)
2 dz 0

(28)

mode may be held below any predetermined level by
choosing ¢ sufficiently large.'® Hence, if a pure mode is
incident at the input, the mode at the output may be
made arbitrarily pure. Thus a sufficiently gradual non-
uniform waveguide may be represented by a single
nonuniform transmission line,

*8 This does not mean that by making the nonuniform waveguide
longer it will be necessarily better,
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Examples

For the first example, let us take a rectangular wave-
guide, with b its narrow wall a function of 2, and com-
pute the reflection of the Ho; mode. Then

d(ln K[m]) -0

7 (33)
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+
A[mN](L)} z L,

- = i exp[$]f B[mN]dZ:If SImNJ[mn]
A (0) 0 0

.exp|:—jf (Bimny T B[mN])dz>dz; w# N (37)
0

where

Bimi1Bimn1 X i1 — X tmn1) dz

+
SN tmn] =
- 1 d(ln &)
Story011 = — —2‘ R (34)
where
i | % d(in b) |
A [o1; = eij,B[m]Lf —‘dz exp [—j26[01]2]d2. (35)
0

Eq. (35) agrees with the result derived by ordinary
transmission line theory, but an essential difference is
implied.

By classical transmission line theory, the only reason
for reflection is a change in impedance, and for that
reason it has been assumed that the characteristic
impedance of the rectangular waveguide (excited in the
dominant mode) is proportional to its height. This
assumption certainly led to a correct result, but it had
to introduce the concept of characteristic impedance,
which has a very limited scope in dealing with wave-
guides.

However, approaching the rectangular waveguide
from the viewpoint of general nonuniform waveguide
theory, it is obvious from (27) that even in first order
approximation—reflections are due to fwo reasons:
1) change in wave impedance, and 2) backward coupling
into the same mode.

Thus—in our interpretation—the reflection in the
above rectangular waveguide is due to a backward
coupling and not a change in impedance.

Let us take for the second example a circularly sym-
metrical taper, which connects two circular waveguides
of different diameters. We shall compute the amplitude
of the spurious modes Hry, Exn in waveguides Gy and
Gs, when waveguide G is fed by an H,,, mode. The cal-
culation applies only to modes above cut-off at every
cross-section of the taper.

Substituting the necessary expressions into (28), we
get the amplitudes of the spurious modes in the follow-
ing form;

A+[MN1 (L)

_ 36
A 1wy (0) (36

}=O if M 5= m.

(38)

Ximn) —the nth root of the Bessel function ji'(x),
a—the radius of the cross-section at z.

AJ(MN) (L)
Aam(0)

+
A (mN)(L)} N l:¢ f LIB P :|ng$

_ = =& exp 7 (mN)03Z 8 (mN') [mn]
A(mg\r>(0) 0 0

'EXP[“J'f Bimay F 5<mN>)dz]dZ (40)
0 .

}:0 ifM=m (39)

where

k m

d(ln a)
\/ﬂ[mnlﬁ(mH) \/X [mn] — m> dz
The amplitudes of the forward and backward Hu,
and E,, modes are given in terms of integrals which

can be evaluated by any one of the approximate inte-
gration methods when the shape of the taper is given.

(41)

+
SNy pmn] =

VI. CONCLUSIONS

A differential equation system in terms of forward and
backward traveling waves has been obtained for a gen-
eral nonunform waveguide. The forward and backward
coupling coefficients between the different modes have
been given and some general conclusions have been
drawn about their properties. Assuming that all the in-
vestigated modes are above cut-off at every cross-sec-
tion of the nonuniform waveguide, and the change in
axial direction is gradual, the differential equation sys-
tem has been solved. The amplitudes of the spurious
modes at the beginning and at the end of the nonuni-
form waveguide have been given in a closed form.

It has been proved that by making the nonuniform
waveguide more and more gradual, the amplitudes of
all the spurious modes tend to zero. Thus—assuming a
pure incident mode—a sufficiently gradual nonuniform
waveguide may be represented by a single nonuniform
transmission line.
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